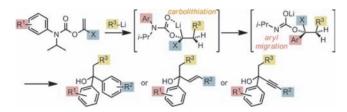
Tertiary Alcohols by Tandem β -Carbolithiation and N \rightarrow C Aryl Migration in Enol Carbamates

ORGANIC LETTERS 2012 Vol. 14, No. 1 142–145


Anne M. Fournier and Jonathan Clayden*

School of Chemistry, University of Manchester, Oxford Road, Manchester M139PL, U.K.

clayden@man.ac.uk

Received October 31, 2011

ABSTRACT

Enol carbamates (*O*-vinylcarbamates) derived from aromatic or α , β -unsaturated compounds and bearing an *N*-aryl substituent undergo carbolithiation by nucleophilic attack at the (nominally nucleophilic) β position of the enol double bond. The resulting carbamate-stabilized allylic, propargylic, or benzylic organolithium rearranges with N→C migration of the N-aryl substituent, creating a quaternary carbon α to O. The products may be readily hydrolyzed to yield multiply branched tertiary alcohols in a one-pot tandem reaction, effectively a polarity-reversed nucleophilic β -alkylation–electrophilic α -arylation of an enol equivalent.

We have recently uncovered a previously unnoticed facet of the reactivity of organolithiums stabilized by *N*-arylcarbamoyl groups, namely their tendency to undergo migration of the *N*-aryl ring to the carbanion center in what amounts to an intramolecular nucleophilic substitution even on an electron-rich aromatic ring.^{1,2} In the case of *N*-aryl-*O*-benzylic carbamates,² lithiation at the benzylic carbon induces a stereochemically invertive intramolecular $N \rightarrow C$ aryl transfer and provides a route to α -arylated tertiary alcohols^{2a} in an enantiomerically enriched form.^{2b} A challenge to the extension of this mechanistically remarkable method into a more general synthesis of hindered and/or electron-rich alcohols is the fact that the deprotonation step needed to generate the intermediate benzyllithium is relatively slow. However, Hoppe^{3a} and Snieckus^{3b} have shown that α -aryl-*O*-alkenylcarbamates are receptive substrates for β -carbolithiation, presumably owing to a complex induced proximity effect⁴ arising from coordination of the organolithium to the carbamate donor, and the stability of the benzylic anion preventing polymerization.⁵ We have shown that *N*-alkenyl-*N'*-aryl ureas likewise undergo addition of organolithiums to their otherwise nucleophilic β -carbons and that the benzylic organolithiums that result undergo a tandem N \rightarrow C aryl transfer.⁶ A related reaction of *O*-vinylcarbamates would provide a remarkable connective route to tertiary alcohols involving two new C–C bond-forming reactions in a single pot.

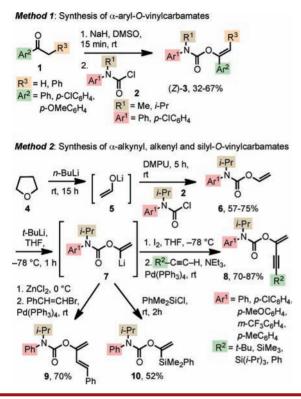
Judging that the carbolithiation would require some degree of stabilization of the product anion,⁷ we used α -aryl, alkynyl, alkenyl, and silyl-*O*-vinylcarbamates as

 ^{(1) (}a) Clayden, J.; Dufour, J.; Grainger, D.; Helliwell, M. J. Am. Chem. Soc. 2007, 129, 7488. (b) Clayden, J.; Hennecke, U. Org. Lett.
 2008, 10, 3567. (c) Bach, R.; Clayden, J.; Hennecke, U. Synlett 2009, 421.
 (d) Tetlow, D. J.; Hennecke, U.; Raftery, J.; Waring, M. J.; Clarke, D. S.; Clayden, J. Org. Lett. 2010, 12, 5442.

^{(2) (}a) Clayden, J.; Farnaby, W.; Grainger, D. M.; Hennecke, U.; Mancinelli, M.; Tetlow, D. J.; Hillier, I. H.; Vincent, M. A. J. Am. Chem. Soc. 2009, 131, 3410. (b) Fournier, A. M.; Brown, R. A.; Farnaby, W.; Miyatake-Ondozabal, H.; Clayden, J. Org. Lett. 2010, 12, 2222.

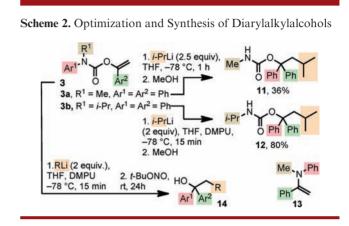
^{(3) (}a) Peters, J. G.; Seppi, M.; Fröhlich, R.; Wibbeling, B.; Hoppe, D. *Synthesis* **2002**, *3*, 381. (b) Superchi, S.; Sotomayor, N.; Miao, G.; Joseph, B.; Campbell, M. G.; Snieckus, V. *Tetrahedron Lett.* **1996**, *37*, 6061.

^{(4) (}a) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int. Ed. **2004**, 43, 2206. (b) Beak, P.; Meyers, A. I. Acc. Chem. Res. **1986**, 19, 356. (c) Rondan, N. G.; Houk, K. N.; Beak, P.; Zajdel, W. J.; Chandrasekhar, J.; Scheleyer, P. R. J. Org. Chem. **1981**, 46, 4108.


^{(5) (}a) Wei, X.; Taylor, R. J. K. Chem. Commun. **1996**, 187. (b) Wei, P.; Johnson, P.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 **2000**, 1109.

⁽⁶⁾ Clayden, J.; Donnard, M.; Lefranc, J.; Minassi, A.; Tetlow, D. J. J. Am. Chem. Soc. 2010, 132, 6624.

⁽⁷⁾ Hogan, A.-M. L.; O'Shea, D. F. Chem. Commun. 2008, 3839.


substrates. α -Aryl-*O*-vinylcarbamates **3** were accessible from ketones **1** by formation of their sodium enolates with NaH in DMSO, followed by *O*-acylation with carbamoyl chlorides **2** (Method 1, Scheme 1).⁸ The carbamates **3** were formed in moderate yields, and in the case of $\mathbb{R}^3 = \mathbb{P}h$ a single geometrical isomer was formed which the X-ray crystal structure of **3g** ($\mathbb{R}^3 = \operatorname{Ar}^1 = \operatorname{Ar}^2 = \operatorname{Ph}$, $\mathbb{R}^1 = i$ -Pr) indicated to have *Z* geometry (see Supporting Information, SI).

Scheme 1. Synthesis of O-Vinylcarbamates

The more versatile Method 2 was used to prepare α alkynyl, alkenyl, and silyl-*O*-vinylcarbamates (Scheme 1). The lithium enolate **5** of acetaldehyde was generated by cleavage of THF **4** using *n*-BuLi,⁹ and *O*-carbamoylation¹⁰ gave simple *O*-vinylcarbamates **6** in good yields. Under standard metalation conditions (*t*-BuLi, THF, -78 °C),¹¹ **6** underwent α -lithiation and the resulting α -lithio species **7** were trapped with I₂ or PhMe₂SiCl to form vinyl iodides or vinyl silanes with perfect control of regiochemistry. The alkynyl groups of **8** were introduced in excellent yields by a Sonogashira reaction,¹² and the alkenyl group of **9** by the *in situ* conversion of **7** into the corresponding zinc species $(ZnCl_2)$ and subsequent Pd-catalyzed cross-coupling with bromostyrene in 70% yield.

In an initial study, *N*-methyl- α -aryl-*O*-vinylcarbamate **3a** (Scheme 2) was treated with *i*-PrLi in THF at -78 °C for 1 h. β -Carbolithiation occurred, followed by N→C migration of the *N*-phenyl ring, to return the product **11** (Scheme 2) in moderate yield (36%). The principal byproduct was **13** presumably resulting from a pathway initiated by carbamate cleavage. Replacement of the *N*-methyl group with an *N*-isopropyl substituent improved the yield significantly. Repeating the carbolithiation-

rearrangement in a mixture of THF and $DMPU^{1,2,13}$ for 15 min allowed us to isolate **12** in 80% yield.

Cleavage of the carbamate group of **11** under standard conditions^{1b,2b} was accompanied by dehydration, but by quenching the carbolithiation-rearrangement reactions with *tert*-butyl nitrite (to form an *N*-nitroso carbamate *in situ*) and stirring the resulting basic reaction mixture for 24 h at rt, diarylalkylalcohols **14** could be obtained from **3** in a one-pot reaction (Scheme 2; Table 1). Addition reactions worked best with primary and secondary alkyllithiums and gave **14** in good to excellent yields (Table 1, entries 1-13) while *tert*-butyllithium (entries 14-17) gave lower yields in some cases.¹⁴ N \rightarrow C aryl migration proceeded regardless of the electronic nature of aryl rings Ar¹ and Ar².

In an attempt to induce asymmetry in the carbolithiation step, the reaction in entry 8 was performed in the presence of (-)-sparteine. However, only moderate enantiofacial differentiation was observed, with the greatest *er* in the addition product being 72:28.^{3a,15}

Attempted β -carbolithiation of the β -substituted *O*-vinylcarbamate **3f** with *i*-PrLi (2.5 equiv) in THF at $-78 \,^{\circ}$ C gave the alkene **15** in 57% yield, presumably resulting from N \rightarrow C aryl migration initiated by a γ -deprotonation followed by γ -carbolithiation of *i*-PrLi and subsequent

⁽⁸⁾ Jiang, X.-B.; van der Berg, M.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. *Tetrahedron: Asymmetry* **2004**, *15*, 2223. *E*-Alkenylcarbamates have also been made by stereoselective carbometallation of alkynylcarbamates; see: Chechik-Lankin, H.; Marek, I. *Org. Lett.* **2005**, *5*, 5087.

 ^{(9) (}a) Bates, R. B.; Kroposki, L. M.; Potter, D. E. J. Org. Chem.
 1972, 37, 560. (b) Jung, M. E.; Blum, R. B. Tetrahedron Lett. 1977, 43, 3791. (c) Clayden, J.; Yasin, S. A. New J. Chem. 2002, 26, 191.

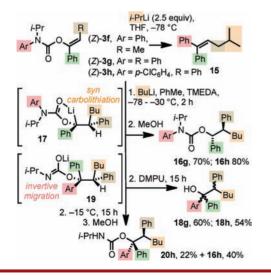
⁽¹⁰⁾ Sengupta, S.; Snieckus, V. J. Org. Chem. 1990, 55, 5680.

⁽¹¹⁾ Snieckus, V. Pure Appl. Chem. 1990, 62, 2047.

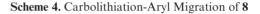
⁽¹²⁾ Chedid, R. B.; Brummer, M.; Wibbeling, B.; Fröhlich, R.; Hoppe, D. Angew. Chem., Int. Ed. 2007, 46, 3131.

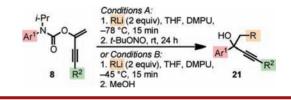
⁽¹³⁾ The coordinating cosolvent DMPU typically accelerates nucleophilic attack of organolithiums on aromatic rings. See ref 1.

⁽¹⁴⁾ Phenyllithium, vinyllithium, and ethoxyvinyllithium failed to add to 3b.


⁽¹⁵⁾ For examples of the use of (-)-sparteine to induce asymmetric carbolithiation, see: (a) Klein, S.; Marek, I.; Poisson, J. F.; Normant, J. F. *J. Am. Chem. Soc.* **1995**, *117*, 8853. (b) Norsikian, S.; Marek, I.; Klein, S.; Poisson, J. F.; Normant, J. F. *Chem.*—*Eur. J.* **1999**, *5*, 2055. (c) Hogan, A.-M. L.; O'Shea, D. F. *J. Org. Chem.* **2008**, *73*, 2503.

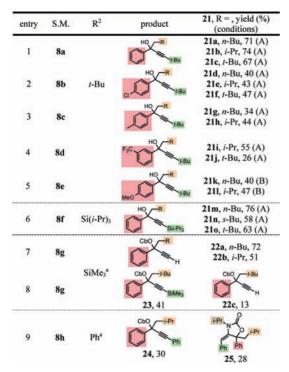
entry	S.M. 3 ($R^1 = i$ -Pr; $R^3 = H$)	Ar ¹	Ar ²	R	14, yield (%)
1	3 b	Ph	Ph	<i>n-</i> Bu	14a, 57
2	3c	p-ClC ₆ H ₄	Ph		14b, 77
3	3d	Ph	p-ClC ₆ H ₄		14b, 55
4	3e	Ph	<i>p</i> -MeOC ₆ H ₄		14e, 68
5	3 b	Ph	Ph	PhCH ₂ ^a	14d, 53 ^b
6	3b	Ph	Ph	<i>i</i> -Pr	14e, 73
7	3c	p-ClC ₆ H ₄	Ph		14f, 65
8°	3d	Ph	p-ClC ₆ H ₄		14f, 51
9	3e	Ph	<i>p</i> -MeOC ₆ H ₄		14g, 81
10	3b	Ph	Ph	sec-Bu	14h , 64
11	3e	p-ClC ₆ H ₄	Ph		14i, 67 ^d
12	3d	Ph	p-ClC ₆ H ₄		14i , 51 ^d
13	3e	Ph	<i>p</i> -MeOC ₆ H ₄		14j , 64 ^d
14	3 b	Ph	Ph	<i>tert-</i> Bu	14k, 71
15	3c	p-ClC ₆ H ₄	Ph		14127
16	3d	Ph	p-ClC ₆ H ₄		14l, 36
17	3e	Ph	<i>p</i> -MeOC ₆ H ₄		1 4m , 67


^{*a*} Obtained by metalation of toluene at rt in the presence of (–)sparteine. ^{*b*} After deprotection of the crude rearranged product by treatment with *n*-BuLi in THF followed by *tert*-butyl nitrite quench. ^{*c*} Reaction in the presence of (–)-sparteine (2 equiv) in cumene at -50 °C for 2 h gave the addition product in 18% yield and 72:28 *er*. ^{*d*} 1:1 mixture of diastereoisomers.


 β -elimination of the lithium carbamate (Scheme 3). β -Carbolithiation was successful however when γ -deprotonation was blocked by a phenyl group. A single diastereoisomer of the addition products **16** was isolated in good yield when **3g** or **3h** was treated with *n*-BuLi/TMEDA in

Scheme 3. Stereospecificity in the Carbolithiation of 3g

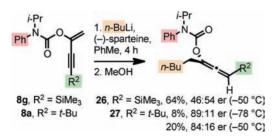
toluene, quenching with methanol at -30 °C. The relative configuration of 16g was proved by an X-ray crystal structure (see SI). The stereochemistry of the product is consistent with syn-addition of the organolithium followed by retentive protonation, in agreement with Hoppe's related observations.^{3a} This result suggests that the substituted benzyllithium intermediate 17 is configurationally stable¹⁶ in toluene/TMEDA on the time scale of the reaction. Coordinating solvents accelerate both the arvl migration step and inversion at the lithium center,² and accordingly adding DMPU to enforce rearrangement after the carbolithiation was complete led to the formation of the alcohols 18g and 18h but as a mixture of diastereoisomers.¹⁷ Avoiding DMPU and instead warming the reaction slowly to -15 °C and stirring for 15 h gave a 35:65 mixture of the single addition product 16h and the rearranged product 20h in a 95:5 diastereoisomeric ratio. The relative stereochemistry of 20h was not determined, but previous aryl migrations in lithiated carbamates have been shown to be invertive.²



The series of related α -alkynyl-O-vinylcarbamates **8** were subjected to the conditions shown to induce β -carbolithiation and N \rightarrow C aryl migration in α -aryl-O-vinylcarbamates **3** (Scheme 4). The alkyllithium was added either in THF in the presence of DMPU at -78 °C for 15 min, followed by a *tert*-butyl nitrite quench, or at -45 °C, with an *in situ* carbamate deprotection occurring in the presence of excess alkyllithium. The resulting alcohols **21** were isolated from this one-pot reaction in moderate to good yields (Table 2).

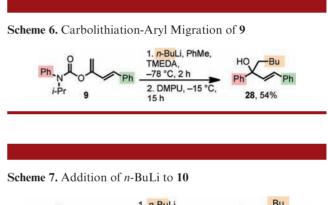
The migration of both electron-rich and -poor migrating rings took place cleanly. The reaction tolerated *tert*-butyl and triisopropylsilyl groups as acetylenic substituents, but trimethylsilyl and phenyl groups were prone to subsequent reactions. Treating *O*-vinylcarbamate **8g** with either *n*-BuLi or *i*-PrLi in THF at -78 °C gave the products **22a** and **22b** of carbolithiation, N→C aryl migration, and loss of the TMS group (Table 2, entry 7), and *tert*-BuLi gave a mixture of **23** and desilylated product **22c** (Table 2, entry 8). Treating *O*-vinylcarbamate **8h** with *i*-PrLi in THF at -78 °C led to carbolithiation, N→C aryl migration, and cyclization of the resulting carbamate anion of **24** onto the triple bond to yield the benzylidene oxazolidinone **25** (Table 2, entry 9).

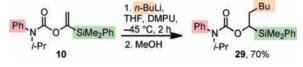
⁽¹⁶⁾ Basu, A.; Thayumanavan, S. *Angew. Chem., Int. Ed.* 2002, *41*, 716.
(17) The lithium-coordinating additive DMPU decreases the configurational stability of *O*-substituted benzyllithiums. See ref 2b.



^{*a*}Cb = C(=O)N*i*-PrPh. Conditions: (1) RLi, THF/DMPU, $-78 \degree C$, 15 min; (2) MeOH.

As observed before, avoiding DMPU resulted in products of carbolithiation only, and treatment of the alkynyl-O-vinylcarbamates **8g** and **8a** with *n*-BuLi in THF at -78 °C (Scheme 5) gave allenes **26** and **27** on protonation. When **8g** was treated with *n*-BuLi in the presence of (–)-sparteine in toluene at -78 °C for 4 h, **26** was returned as a racemate, presumably because the silyl group stabilizes a negative charge which facilitates racemization.^{18a} In contrast, under the same conditions, **8a** afforded **27** in 89:11 *er*, but in a low yield (8%) due to an incomplete conversion. Raising the temperature to -50 °C increased the yield to 20% with a slight erosion in the *er* (84:16). Longer reaction





^a Absolute stereochemistry not determined.

times lowered the enantioselectivity, presumably due to epimerization of the lithiated intermediate.^{18,19}

Under the conditions used previously for carbolithiation-N \rightarrow C aryl migration of α -aryl and α -alkynyl-Ovinylcarbamates (THF/DMPU, -78 °C), α-alkenyl-Ovinylcarbamate 9 failed to react (Scheme 6). However, the corresponding alcohol 28 was obtained in 54% yield by carrying out the carbolithiation in toluene at -78 °C in the presence of TMEDA, thus increasing the reactivity of the organolithium, then adding DMPU, and increasing the temperature to -15 °C to enforce N \rightarrow C arvl transfer after the carbolithiation was complete. Notably, carbolithiation was regioselective for the enol double bond rather than the styrene double bond.^{15b} Carbolithiation of α -silvl-O-vinylcarbamate 10 gave only the addition product 29 in 70% yield upon treatment with *n*-BuLi in THF/DMPU at -45 °C (Scheme 7). We were unable to induce $N \rightarrow C$ aryl transfer of the intermediate, perhaps because of its inability to form a solvent separated ion pair^{2a} under the conditions of the reaction.

In summary, the β -carbolithiation of a range of *N*-aryl-*N*-isopropyl-*O*-vinylcarbamates, coupled with tandem N \rightarrow C aryl migration, nitrosation, and deprotection, provides a method for the construction of branched tertiary benzylic, propargylic, and allylic alcohols in a single pot from simple precursors.

Acknowledgment. We are grateful to GlaxoSmithKline and the EPSRC for a studentship and to Dr. Christopher Nichols of GlaxoSmithKline for helpful discussions.

Supporting Information Available. Characterization and experimental details for all new compounds. X-ray data for 3g and 16g. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(18) (}a) Dreller, S.; Dyrbusch, M.; Hoppe, D. *Synlett* **1991**, 397.
(b) Schultz-Fademrecht, C.; Wibbeling, B.; Fröhlich, R.; Hoppe, D. *Org. Lett.* **2001**, *3*, 1221.

⁽¹⁹⁾ Tomida, Y.; Nagaki, A.; Yoshida, J.-I. J. Am. Chem. Soc. 2011, 133, 3744.